Multidirectional Physarum Solver: an Innovative Bio-inspired Algorithm for Optimal Discrete Decision Making

نویسندگان

  • Luca Masi
  • Massimiliano Vasile
چکیده

This paper introduces a new bio-inspired algorithm for optimal discrete decision making, able to incrementally grow and explore decision graphs in multiple directions. The heuristic draws inspiration from the idea that building decision sequences from multiple directions and then combining the sequences is an optimal choice if compared with a unidirectional approach. The behaviour of the slime mould Physarum Polycephalum, a large single-celled amoeboid organism, is used as basic heuristic for graph exploration and growth. The algorithm is here applied to the solution of classical problems in operational research, i.e. symmetric Travelling Salesman and Vehicle Routing Problems, with a number of cities ranging from 10 to 199. Simulations on selected test cases demonstrate that a multidirectional solver performs better than a unidirectional one. The ability to evaluate decisions from multiple directions enhances the performance of the solver in the construction and selection of optimal decision sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Multi-objective Discrete Decision Making Using a Multidirectional Modified Physarum Solver

This paper will address a bio-inspired algorithm able to incrementally grow decision graphs in multiple directions for discrete multi-objective optimization. The algorithm takes inspiration from the slime mould Physarum Polycephalum, an amoeboid organism that in its plasmodium state extends and optimizes a net of veins looking for food. The algorithm is here used to solve multi-objective Travel...

متن کامل

A Multi-Directional Modified Physarum Algorithm for Optimal Multi-Objective Discrete Decision Making

This paper will address an innovative bio-inspired algorithm able to incrementally grow decision graphs in multiple directions for discrete multi-objective optimisation. The algorithm takes inspiration from the slime mould Physarum Polycephalum, an amoeboid organism that in its plasmodium state extends and optimizes a net of veins looking for food. The algorithm is here used to solve multi-obje...

متن کامل

Analytical evaluation of an innovative decision-making algorithm for VM live migration

In order to achieve the virtual machines live migration, the two "pre-copy" and "post-copy" strategies are presented. Each of these strategies, depending on the operating conditions of the machine, may perform better than the other. In this article, a new algorithm is presented that automatically decides how the virtual machine live migration takes place. In this approach, the virtual machine m...

متن کامل

Comparison of Bio-Inspired and Graph-Theoretic Algorithms for Design of Fault-Tolerant Networks

Recently several approaches have been presented that exploit the ability of Physarum polycephalum to connect several food sources via a network of pipes in order to maintain an efficient food distribution inside the organism. These approaches use the mechanisms found in nature in order to solve a technical problem, namely the design of constructing faulttolerant and efficient connection network...

متن کامل

A Slime Mold Solver for Linear Programming Problems

Physarum polycephalum (true slime mold) has recently emerged as a fascinating example of biological computation through morphogenesis. Despite being a single cell organism, experiments have observed that through its growth process, the Physarum is able to solve various minimum cost flow problems. This paper analyzes a mathematical model of the Physarum growth dynamics. We show how to encode gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013